I he Synthesis of Six-Membered P-Heterocycles with Sterically Demanding Substituent on the Phosphorus Atom

György Keglevich,¹ Henrietta Forintos,¹ Melinda Sipos,¹ András Dobó,² Krisztina Ludányi,² Károly Vékey,² Antal Tungler,³ and László Tőke⁴

Received 6 March 2001; revised 30 March 2001

ABSTRACT: The ring enlargement of 1-(2,4,6-trialky-lphenyl)2,5-dihydro-1H-phosphole oxides (1) via 6,6-dichloro-3-phosphabicyclo[3.1.0]hexanes (2) afforded the double-bond isomers of 1,2-dihydrophosphinine oxides (3). Catalytic hydrogenation of the isomeric 1-(di-tert-butyltolyl)-1,2-dihydrophosphinine oxides (3a) gave the diastereomers of phosphinane oxide (4), while that of the 1-(tri-isopropylphenyl) isomers (5) led predominantly to phospholane oxides (6) formed by ring contraction. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:528–533, 2001

INTRODUCTION

The introduction of sterically demanding substituents on the heteroatom of organophosphorus

compounds may affect the physical and the chemical properties of the substrate to a large extent [1]. A bulky P-substituent, such as the 2,4,6-trialkylphenyl group, may have an impact on the geometry around the P-pyramid [2–4]. On the other hand, the reactivity of the P=O moiety is also influenced by the presence of the trialkyphenyl substituent [5,6]. In this article, we describe the synthesis of some 6-membered heterocycles containing a di-tert-butyltolyl or a tri-tert-butylphenyl group on the phosphorus atom.

RESULTS AND DISCUSSION

We wished to utilize the dichlorocarbene ring enlargement method elaborated by us for the synthesis of 6- and 7-membered P-heterocycles [7–9]. Using this method, dichlorocarbene was added onto the double bond of 2,5-dihydro-1*H*-phosphole oxides **1a,b** to form 3-phosphabicyclo[3.1.0]hexane oxides **2a,b** (Scheme 1). It was observed that the choice of the source of the dichlorocarbene had an impact on the outcome of the dichlorocyclopropanation of dihydrophosphole oxide **1a**. The use of dichlorocarbene generated from chloroform by

¹Department of Organic Chemical Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary

²Hungarian Academy of Sciences, Chemical Research Center, 1525 Budapest, Hungary

³Department of Chemical Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary

⁴Research Group of the Hungarian Academy of Sciences at the Department of Organic Chemical Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary

Correspondence to: György Keglevich.

Contract Grant Sponsor: Ministry of Higher Education (FKFP). Contract Grant Number: 363/1999.

Contract Grant Sponsor: Hungarian Scientific Research Fund (OTKA).

Contract Grant Number: T029039. © 2001 John Wiley & Sons, Inc.

SCHEME 1

aqueous sodium hydroxide under phase transfer catalytic (PTC) conditions led to two phosphabicyclohexane diastereomers $(2_1a \text{ and } 2_2a)$; isomer 2_1a predominated over form 2_2a . At the same time, using sodium trichloroacetate as the precursor for dichlorocarbene, only isomer 22a was found to have been formed. This was also the case during the synthesis of the tri-*tert*-butylphenyl derivative ($\mathbf{2}_{2}\mathbf{b}$). All isomers $(2_1a, 2_2a, and 2_2b)$ were obtained in a pure form by column chromatography. The stereostructures of isomers 2_1 and 2_2 were assigned on the basis of stereospecific ${}^{3}J_{PC}$ couplings. The ${}^{3}J_{PC}$ coupling of 5.4 Hz detected on C-6 suggested structure 2_1a , while the coupling constants of 11.8 and 20.3 Hz confirmed a geometry represented by form 2_2 [10,11]. The phosphabicyclohexanes (2a,b) were characterized by ³¹P, ¹³C, and ¹H NMR, as well as mass spectroscopy. The ¹³C NMR spectral parameters are listed in Table 1. Elemental composition of the new products (2a,b) was supported by HRMS.

In the second step of the ring enlargement, the cyclopropane ring of adducts 2a,b was opened thermally. The 1,2-dihydrophosphinine oxides (**3a,b**) so formed were obtained as a mixture of two doublebond isomers (3_1a_1b) and $3_2a_1b)$ (Scheme 1). To our surprise, the tert-butyl group in the para position of the arvl ring was also split during the thermolysis of tri-tert-butyl derivative 2₂b. The dihydrophosphinine oxides (3a,b) were characterised by ³¹P, ¹³C, and ¹H NMR, as well as mass spectroscopic data. The ¹³C NMR spectral parameters of dihydrophosphinine oxides 31a,b can be found in Table 2. The elemental composition of products **3a,b** was confirmed by high-resolution mass spectrometry (HRMS). The δ_{P} chemical shifts for the double-bond isomers (3₁ and 3₂) of aryl-dihydrophosphinine oxides 3a and 3b fall in the expected region of 16-19 ppm. It is noteworthy that, while the 1-(2,4,6-triisopropylphenyl)-4-chloro-3-methyl-1.2-dihydrophosphinine 1-oxide described earlier displayed a δ_P of 19.1, the 5-methyl isomer exhibited a δ_P of 45.9 that is almost 30 ppm downfield of the expected region [11]. Semiempirical calculations suggested that the unique shift is the consequence of an electron distribution due to a special geometry [11].

Disregarding structure identification, there was no need to separate phosphabicyclohexane isomers $\mathbf{2}_1$ and $\mathbf{2}_2$. The thermolysis could be efficiently run on isomeric mixtures. Thermal examinations of adducts $\mathbf{2}\mathbf{a}$, \mathbf{b} suggested 135° C to be the optimum temperature of the thermolyses. At a higher temperature, extensive decomposition of the starting phosphabicyclohexanes ($\mathbf{2}\mathbf{a}$, \mathbf{b}) and the dihydrophosphinine oxides ($\mathbf{3}\mathbf{a}$, \mathbf{b}) was observed to take place. Obviously, the polymerization of the dihydrophosphinine oxide ($\mathbf{3}$) also decreased the yield.

We wished to extend the sphere of trialkylphenyl P-heterocycles to phosphinane oxides. For this, the mixture containing the double-bond isomers of dihydrophosphinine oxide 3a was subjected to catalytic hydrogenation. As expected, the reduction furnished phosphinane oxide 4 as a mixture of diastereomers $(4_1 \text{ and } 4_2)$ (Scheme 2). Product 4 was characterized by ³¹P and ¹³C NMR, as well as mass spectroscopic data. The spectral parameters are consistent with those reported earlier for other phosphinane oxides [12,13]. The δ_P of ca. 38 clearly refers to the saturated six-membered heteroring with a phosphine oxide function [12,13]. Interestingly, catalytic hydrogenation of the isomeric mixture of the earlier described triisopropylphenyldihydrophosphinine oxide (5) gave predominantly three dimethyl-phospholane oxides (61, 62 and $\mathbf{6_3}$); the expected phosphinane-isomers ($\mathbf{7_1}$ and $\mathbf{7_2}$) formed only a minor component of the reaction

TABLE 1 ¹³C NMR Data for the Isomers (2₁ and 2₂) of Phosphabicyclohexane Oxides 2a,b in CDCl₃ Solution

Compound		δ (J _{PC} in Hz)															
	C ₁	C_2	C ₄	<i>C</i> ₅	C_6	C ₁ - CH ₃	$C_{1'}$	$C_{2'}$	$C_{3'}$	$C_{4'}$	$C_{5'}$	$C_{6^{'}}$	$C_{2'}$ – $C(CH_3)_3$ C_2	_{4′} – C(CH ₃)	₃ C _{2′} – CMe ₃	C _{4'} – CMe ₃	C _{6'} - CH ₃
2 ₁ a			35.6 (66.6)			22.3) (8.3)	130.1 (85.0)		124.3 ^a (11.0)		124.5 ^a (10.8)	139.7 (13.0)	31.1 ^b	33.2 ^b	34.8 ^c	38.6 ^c	25.1 (4.8)
2 ₂ a	35.9	42.4	36.2 (69.0)	36.9	71.9	21.6	,	155.0	123.9 ^d (11.6)	152.9 (2.2)	125.2 ^d	142.1	30.9 ^e	33.5 ^e	34.5 ^f	37.9 ^f	24.2 (5.0)
2 ₂ b	35.2	40.7	39.2 (72.3)	33.6	73.7	20.3	124.7 (91.8)	158.9		152.6 (3.2)	, ,	` ,	33.4	31.1	33.7	34.8	, ,

^{a-f}May be reversed. ^gBroad signal.

TABLE 2 ¹³C NMR Data for Dihydrophosphinine Oxides 3₁a,b in CDCl₃ Solution

		δ (J _{PC} in Hz)															
Compound	<i>C</i> ₂	<i>C</i> ₃	C ₄	<i>C</i> ₅	<i>C</i> ₆	C ₃ – CH ₃	C _{1′}	<i>C</i> _{2′}	$C_{3'}$	$C_{4'}$	C _{5′}	<i>C</i> _{6′}	$C_{2'}$ – $C(CH_3)_3$	C _{4'} – C(CH ₃) ₃	3 C _{2′} – CMe ₃	C _{4'} – CMe ₃	C _{6′} – CH ₃
3 ₁ a		124.0 (20.3)		139.0)	122.9 (94.0)		126.3 (100.6)		123.6 ^b (11.2)	153.6	124.0 ^b (10.9)	141.0 (13.0)		33.3 ^c	34.7 ^d	38.1 ^d	25.0 ^a (6.3)
3 ₁ b		124.1 (19.6)		´144.2)	120.0 (93.3)	23.6	` <i>e</i> ′	151.6 [°]	124.8 (10.8)	126.7	,	,	31.5		35.2		,

^{a-d}May be reversed. ^eNot resolved.

SCHEME 2

mixture (Scheme 3). Among the phospholane oxides, 6_1 is racemic, while 6_2 and 6_3 are symmetrical. The ³¹P and ¹³C NMR spectral parameters of isomers 6_1 , 6_2 , and 6_3 were identical with those of authentic samples prepared by the hydrogenation of 1-(2,4,6-triisopropylphenyl)-3,4dimethyl-2,5-dihydro-1H-phosphole oxide [6]. The δ_P values of 52.7, 57.8, and 60.9 obtained for $\boldsymbol{6_1}$, $\mathbf{6}_{2}$, and $\mathbf{6}_{3}$, respectively, fall well in the range that is characteristic of phospholane oxides. Products 7₁ and 72 were characterized by 31P and 13C NMR, as well as mass spectroscopical data. It is noteworthy that under the conditions of the catalytic hydrogenation (80°C and 10 bar), a ring contraction took place. We thought that the hydrochloric acid formed during the reduction might also promote the ring transformation. The result of a hydrogenation carried out in the presence of one equivalent of triethylamine, however, excluded this possibility; moreover, the product composition was shifted in favor of the dimethyl-phospholane oxides (95% vs. 5%). During the catalytic hydrogenation of di-tert-butyltolyldihydrophosphinine oxide 3a, only traces of the cor-

responding dimethylphospholane oxides ($\mathbf{8_1}$ with δ_P 50.3 and $\mathbf{8_2}$ with δ_P 54.2) could be detected. In the present stage of the work, it is not clear why only in the case of triisopropylphenyl substituent was a significant ring contraction observed. The electron-releasing ability of the P-substituent is probably responsible for the ring contraction that has never been observed.

In the next stage of our work, the P-arylheterocycles introduced will serve as suitable starting materials in a study focused on the reactivity of trialkylphenyl derivatives.

EXPERIMENTAL

General Procedure for the Preparation of Phosphabicyclohexanes **2**₂**a,b** by the Dichlorocyclopropanation of Dihydrophosphole Oxides **1a,b** Using Sodium Trichloroacetate

A mixture of 5.0 mmol of dihydrophosphole 1, 0.12 g (0.53 mmol) of TEBAC, and 23.2 g (0.125 mol) of sodium trichloroacetate in 50 mL of chloroform was stirred at reflux for 7 days. The contents of the flask were then filtered, and the solvent of the filtrate evaporated. The residual oil was purified by repeated column chromatography (chloroform; 2% methanol in chloroform; benzene–acetone 4:6, silica gel) to give product 2₂.

Compound **2**₂**a**: Yield 32%; δ_P (CDCl₃) 80.7; δ_C , Table 1; δ_H 1.27 (s, 9H, CMe₃), 1.51 (s, 9H, CMe₃), 1.68 (s, 3H, C₃–Me), 2.67 (s, 3H, C₆–Me); MS, m/z (rel. int.) 400 (M⁺, 7), 385 (4), 365 (100), 249 (47); HRMS, M_{found}^+ = 400.1515, $C_{21}H_{31}Cl_2OP$ requires 400.1490 for the ³⁵Cl isotopes.

Compound **2₂b**: Yield 41%; δ_P (CDCl₃) 80.5; δ_C , Table 1; δ_H 1.29 (s, 9H, C₄–CMe₃), 1.47 (s, 3H, C₃–Me), 1.51 (s, 18H, C₂–CMe₃); MS, m/z (rel. int.) 442 (M⁺, 7), 407 (14), 385 (100), 291 (34); HRMS, M⁺_{found} = 442.1975, C₂₄H₃₇Cl₂OP requires 442.1959 for the ³⁵Cl isotopes.

Synthesis of Phosphabicyclohexane **2**₁**a** by the Dichlorocyclopropanation of Dihydrophosphole Oxide **1a** Using CHCl₃–NaOH/H₂O under PTC

To the solution of 1.0 g (3.15 mmol) of dihydrophosphole 1 and 0.15 g (0.66 mmol) of TEBAC in 40 mL of chloroform was added dropwise 6.0 g (0.15 mol) of sodium hydroxide in 9 mL of water. The mixture was stirred with heating for 4 hours. After filtration and separation, the organic phase was made up to its original volume, and 0.15 g (0.66 mmol) of TEBAC was added. The reaction mixture was treated with a second portion of aqueous sodium hydroxide as previously. The workup procedure afforded a crude mixture containing 89% of 2₁a and 11% of 2₂a. Separation by column chromatography afforded 0.56 g (44%) of isomer $\mathbf{2}_1\mathbf{a}$. δ_P (CDCl₃) 82.9; δ_C , Table 1; δ_H 1.31 (s, 9H, CMe₃), 1.57 (s, 9H, CMe₃), 1.66 (s, 3H, C_3 -Me), 2.47 (s, 3H, C_6 -Me); MS, m/z (rel. int.) 400 $(M^+, 6)$, 385 (4), 365 (100), 249 (31); HRMS, $M_{\text{found}}^+ =$ 400.1531, $C_{21}H_{31}Cl_2OP$ requires 400.1490 for the ³⁵Cl isotopes.

General Procedure for the Preparation of the Double-Bond Isomers (**3**₁ and **3**₂) of dihydrophosphinine oxides **3a,b**

A 1.5 mmol sample of adduct **2** (either as pure isomer $\mathbf{2}_1$ or $\mathbf{2}_2$, or as an isomeric mixture) was heated in a vial at 135°C until the evolution of hydrochloric acid ceased. The crude product was purified by repeated column chromatography (as previously) to furnish product **3** as the mixture of $\mathbf{3}_1$ and $\mathbf{3}_2$ isomers in a purity of 95–97%.

Compounds **3**₁**a** and **3**₂**a**: Reaction time 1.5 hours; yield 31%; δ_P 18.9 (79%) and 17.3 (21%); δ_C , Table 2; δ_H 1.32 (s, 9H, CMe₃), 1.66 (s, 9H, CMe₃), 2.11 (s, 3H, Me), 2.28 (s, 3H, Me), 6.31 (dd, $J_1 = J_2 = 12.7$, 1H, C₆-H), 6.72 (dd, $J_1 = 12.7$, $J_2 = 35.3$, 1H, C₅-H); MS, m/z (rel. int.) 364 (M⁺, 94), 349 (13), 329 (100), 249 (6); HRMS, $M_{found}^+ = 364.1762$, C₂₁H₃₀ClOP requires 364.1723 for the ³⁵Cl isotope.

Compounds **3**₁**b** and **3**₂**b**: Reaction time 1 hours; yield 34%; δ_P 17.1 (77%) and 16.2 (23%); δ_C , Table 2; δ_H 1.31 (s, 18H, CMe₃), 2.06 (s, 3H, Me), 6.20 (dd, $J_1 = J_2 = 12.6$, 1H, C₆–H), 6.88 (dd, $J_1 = 12.7$, $J_2 = 34.3$, 1H, C₅–H); HRMS, $M_{\text{found}}^+ = 350.1598$, C₂₀H₂₈ClOP requires 350.1566 for the ³⁵Cl isotope.

General Procedure for the Catalytic Hydrogenation of the Double Bond Isomers of Dihydrophosphinimine Oxides **3a** and **5**

To the mixture of 1.20 mmol of the dihydrophosphinine oxide (3a or 5) in 35 mL of methanol was added 0.2 g of 5% palladium on carbon, and the suspension was then hydrogenated at 10 bar and 80° C until 3 equivalents of hydrogen were absorbed. The mixture was filtered, the solvent was evaporated, and the residue were purified by column chromatography (silica gel, 3% methanol in chloroform) to give 4_1 and 4_2 (experiment 1) or the mixture of 6_1 , 6_2 , 6_3 , 7_1 , and 7_2 (experiment 2).

Experiment 1. Yield: 36%; ³¹P NMR (CDCl₃) δ 38.6 (66%) and 37.1 (34%); fast atom bombardment mass spectrometry (FABMS); 335 (M+H)⁺; (M+H)⁺_{found} = 335.2447, C₂₁H₃₆OP requires 335.2504; ¹³C NMR (CDCl₃) for isomer **4**₁: δ 21.8 (J=5.4, C₅), 22.2 (J=7.8, C₃–Me), 23.2 (C₆–Me), 28.9 (J=65.1, C₆), 30.5 (J=5.4, C₃), 30.9 (C₂–C(CH₃)₃), 33.4 (C₄–C(CH₃)₃), 34.6 (J=5.3, C₄), 34.6 (C₂–CMe₃), 38.4 (C₄–CMe₃), 39.9 (J=63.1, C₂), 123.9 (J=9.7, C^{*}_{3'}), 124.3 (J=9.2, C^{*}_{5'}), 139.3 (J=14.3, C_{6'}), 152.6 (C_{4'}), 158.6 (J=7.0, C_{2'}). (*,may be reversed.)

Experiment 2. To collect enough material, the hydrogenation was repeated. The combined mixture containing $\mathbf{6}_1$ (29%), $\mathbf{6}_2$ (38%), $\mathbf{6}_3$ (14%), $\mathbf{7}_1$ (14%) and $\mathbf{7}_2$ (5%) was refined by repeated column chromatography (as described previously) to afford a fraction containing mainly dimethylphospholane oxides $\mathbf{6}_1$ (δ_P 52.7, δ_P lit. [6] 52.9), $\mathbf{6}_2$ (δ_P 57.8, δ_P lit. [6] 57.9) and $\mathbf{6}_3$ (δ_P 60.9, δ_P lit. [6] 61.0), as well as another fraction consisting of the diastereomers of phosphinane oxide $\mathbf{7}$.

Yield of **7**₁ and **7**₂: 8%; ³¹P NMR (CDCl₃) δ 38.6 (74%) and 37.4 (26%); FABMS, 335 (M+H)⁺; ¹³C NMR (CDCl₃) for isomer **7**₁: δ 21.8 (J = 6.6, C₅), 23.7 (C₄–CH(CH₃)₂), 25.0 (J = 14.9, C₃–Me), 25.2 (C₂–CH(CH₃)₂), 29.3 (C₄–CHMe₂), 30.2 (C₂–CHMe₂), 30.6 (J = 65.3, C₆), 34.2 (C₃), 35.1 (J = 5.0, C₄), 40.0 (J = 62.7, C₂), 123.1 (J = 11.6, C₃′), 124.3 (J = 89.8, C₁′), 152.0 (C₄′), 153.9 (J = 12.0, C₂′).

REFERENCES

- [1] Yoshifuji, M. Main Group Chem News 1998, 6, 20.
- [2] Quin, L. D.; Keglevich, Gy.; Ionkin, A. S.; Kalgutkar, R.; Szalontai, G. J Org Chem 1996, 61, 7801.
- [3] Keglevich, Gy.; Quin, L. D.; Böcskei, Zs.; Keserű, Gy. M.; Kalgutkar, R.; Lahti, P. M. J Organomet Chem 1997, 532, 109.
- [4] Keglevich, Gy.; Böcskei, Zs.; Keserű, Gy. M.; Újszászy, K.; Quin, L. D. J Am Chem Soc 1997, 119, 5095.
- [5] Keglevich, Gy.; Forintos, H.; Szöllosy, Á.; Tőke, L. Chem Commun 1999, 1423.
- [6] Keglevich, Gy.; Forintos, H.; Keserű, Gy. M.; Hegedűs, L.; Tőke, L. Tetrahedron 2000, 56, 4823.
- [7] Keglevich, Gy. Synthesis 1993, 931.

- [8] Keglevich, Gy.; Petneházy, I.; Miklós, P.; Almásy, A.; Toth, G.; Tőke, L.; Quin, L. D. J Org Chem 1987, 52,
- [9] Keglevich, Gy.; Androsits, B.; Tőke, L. J Org Chem 1988, 53, 4106.
- [10] Keglevich, Gy.; Kovács, A.; Tőke, L. Acta Chim Hung 1994, 131, 513.
- [11] Keglevich, Gy.; Keseru, Gy. M.; Forintos, H.; Szöllösy, Á.; Ludányi, K.; Tőke, L. J Chem Soc Perkin Trans 1 1999, 1801.
- [12] Keglevich, Gy.; Kovács, A.; Újszászy, K.; Tungler, A.; Tóth, G.; Tőke L. Phosphorus Sulfur 1992, 70,
- [13] Keglevich, Gy.; Tungler, A.; Novák, T.; Tőke, L. J Chem Res 1996, 528.